Gating properties of Na(v)1.7 and Na(v)1.8 peripheral nerve sodium channels.

نویسندگان

  • K Vijayaragavan
  • M E O'Leary
  • M Chahine
چکیده

Several distinct components of voltage-gated sodium current have been recorded from native dorsal root ganglion (DRG) neurons that display differences in gating and pharmacology. This study compares the electrophysiological properties of two peripheral nerve sodium channels that are expressed selectively in DRG neurons (Na(v)1.7 and Na(v)1.8). Recombinant Na(v)1.7 and Na(v)1.8 sodium channels were coexpressed with the auxiliary beta(1) subunit in Xenopus oocytes. In this system coexpression of the beta(1) subunit with Na(v)1.7 and Na(v)1.8 channels results in more rapid inactivation, a shift in midpoints of steady-state activation and inactivation to more hyperpolarizing potentials, and an acceleration of recovery from inactivation. The coinjection of beta(1) subunit also significantly increases the expression of Na(v)1.8 by sixfold but has no effect on the expression of Na(v)1.7. In addition, a great percentage of Na(v)1.8+beta(1) channels is observed to enter rapidly into the slow inactivated states, in contrast to Nav1.7+beta(1) channels. Consequently, the rapid entry into slow inactivation is believed to cause a frequency-dependent reduction of Na(v)1.8+beta(1) channel amplitudes, seen during repetitive pulsing between 1 and 2 Hz. However, at higher frequencies (>20 Hz) Na(v)1.8+beta(1) channels reach a steady state to approximately 42% of total current. The presence of this steady-state sodium channel activity, coupled with the high activation threshold (V(0.5) = -3.3 mV) of Na(v)1.8+beta(1), could enable the nociceptive fibers to fire spontaneously after nerve injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lidocaine promotes the trafficking and functional expression of Na(v)1.8 sodium channels in mammalian cells.

Nociceptive neurons of the dorsal root ganglion (DRG) express a combination of rapidly gating TTX-sensitive and slowly gating TTX-resistant Na currents, and the channels that produce these currents have been cloned. The Na(v)1.7 and Na(v)1.8 channels encode for the rapidly inactivating TTX-sensitive and slowly inactivating TTX-resistant Na currents, respectively. Although the Na(v)1.7 channel e...

متن کامل

Lidocaine promotes the trafficking and functional expression of Nav1.8 sodium channels in mammalian cells Abbreviated Title: Functional expression of Nav1.8 in tsA201 cells

Nociceptive neurons of the dorsal root ganglion (DRG) express a combination of rapidly gating TTX-sensitive and slowly gating TTX-resistant Na currents and the channels that produce these currents have been cloned. The Na v 1.7 and Na v 1.8 channels encode for the rapidly inactivating TTX-sensitive and slowly inactivating TTX-resistant Na currents respectively. Although the Na v 1.7 channel exp...

متن کامل

Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain.

Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na(v)s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Na...

متن کامل

ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties.

Na(v)1.7 sodium channels can amplify weak stimuli in neurons and act as threshold channels for firing action potentials. Neurotrophic factors and pro-nociceptive cytokines that are released during development and under pathological conditions activate mitogen-activated protein kinases (MAPKs). Previous studies have shown that MAPKs can transduce developmental or pathological signals by regulati...

متن کامل

The roles of sodium channels in nociception: Implications for mechanisms of pain.

Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2001